
Association analysis. 
Basic concepts

Lecture 12



Types of learning tasks
Su

p
er

vi
se

d
 

le
ar

n
in

g
U

n
su

p
er

vi
se

d
 

le
ar

n
in

g

Prediction Classification

Clustering Associations



Classification rules: reminder
Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

R1: if humidity=normal and windy=false 
then yes

R2: if outlook=overcast then yes
R3: if temp=hot then no
R4: if outlook=rainy and windy=true then no

• LHS: rule antecedent : in this 
case – combination of 
attribute-values

• RHS: rule consequent: in this 
case – class label



Association rules: no class

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

R1: if temp=cool then humidity=normal

• LHS: rule antecedent : 
combination of attribute-values

• RHS: rule consequent:
combination of attribute-values



Association rules: no class
Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

R1: if temp=cool then humidity=normal
R2: if temp=hot then humidity=high

• LHS: rule antecedent : 
combination of attribute-values

• RHS: rule consequent:
combination of attribute-values



The goal: discover relationships 
between attributes

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

R1: if temp=cool then humidity=normal
R2: if temp=hot then humidity=high

• Association rules are looking for 
the relationships between 
objects 

• They discover related properties 
of objects by searching for the 
attribute-values that appear 
often in the same observation 



Terminology: market basket

Market 
basket



Terminology: market basket

Item



Terminology: market basket

Observation = transaction



Terminology: itemset

Set of k items – k-itemset

A={Coke, Diaper} – 2-itemset

If itemset A is a subset of items in transaction ti, we 
say ti contains A or supports A



Terminology: support count

Number of transactions which contain 
itemset A – support count (σ)

support count {Coke, Diaper} =2



Terminology: support (fraction)

Fraction of transactions which 
contain itemset A – support s

support {Coke, Diaper} =2/5



Terminology: frequent itemset

An itemset whose support is greater than or equal 
to a minsup threshold – frequent itemset

For minsup=40% frequent itemsets are:
{Coke, Diaper}
{Bread, Milk}
…



Association rules

• Association Rule

– An implication of the form X → Y, 
where X and Y are itemsets

– Example:
{Milk, Diaper} → {Beer} 

• Rule Evaluation Metrics (X → Y)

– Support (s)

• Fraction of transactions that 
contain both X and Y

– Confidence (c)

• Measures how often items in Y
appear in transactions that
contain X

Example:



Why Use Support and Confidence?

Support
– A rule that has very low support may occur simply by 

chance. 

– Support is often used to eliminate random spurious rules. 

Confidence
– Measures the reliability of the inference made by a rule. 

– For a rule X → Y , the higher the confidence, the more 
likely it is for Y to be present in transactions that contain X. 

– Confidence provides an estimate of the conditional 
probability of Y given X.



Association analysis: motivation

• Marketing and Sales Promotion:

Let the rule discovered be

{Bagels, … } --> {Potato Chips}

– Potato Chips as consequent

Can be used to determine what should be done to boost its 
sales.

– Bagels in the antecedent

Can be used to see which products would be affected if the 
store discontinues selling bagels



ML Task: Learning Association Rules

• Given a set of transactions T, the goal of association rule 
learning is to find all rules having 

▪ support ≥ minsup threshold

▪ confidence ≥ minconf threshold

• Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Prune rules that fail the minsup and minconf thresholds

⇒ Computationally prohibitive! 



How many possible rules R
• Suppose there are d items in total. We first choose k of the items to form the left-

hand side of the rule. There are Cd,k ways for doing this. 

• Now, there are Cd−k,i ways to choose the remaining items to form the right-hand 

side of the rule, where 1 ≤ i ≤ d−k. 



Brute-force approach
• R=3d-2d+1+1

• For d=6 (small), 

36-27+1=602 possible rules

• However, 80% of the rules are 
discarded after applying 
minsup=20% and minconf=50%, 
thus making most of the 
computations wasted. 

• So, it would be useful to prune the 
rules early without having to 
compute their support and 
confidence values. 

An initial step toward 

improving the performance: 

decouple the support and 

confidence requirements.



Learning Association Rules

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67) 
{Diaper} → {Milk,Beer} (s=0.4, c=0.5) 
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

Observations:

• All the above rules are binary partitions of the same itemset: 
{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
can have different confidence

• Thus, we may decouple the support and confidence requirements

If the itemset is infrequent, then all six candidate rules can be pruned immediately 
without us having to compute their confidence values.



Learning Association Rules

Two-step approach: 

1. Frequent Itemset Generation

– Generate all itemsets whose support ≥ minsup (these 
itemsets are called frequent itemset)

2. Rule Generation

– Generate high confidence rules from each frequent 
itemset, where each rule is a binary partitioning of a 
frequent itemset

We focus on frequent itemset generation first



FREQUENT ITEMSET GENERATION

Step 1



Candidates for frequent itemsets

Given d items, there are 
M=2d -1 possible 
candidate itemsets



Frequent Itemset Generation: 
brute force

• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database
• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

– w is max transaction width (max number of items in one transaction).



Frequent itemset generation: 
Apriori algorithm

• The name Apriori is based on the fact that we use prior
knowledge about k-itemsets in order to prune candidate k+1-
itemsets

• The idea: level-wise processing

– find frequent 1-itemsets: F1

– F1 is used to find F2

– In general, Fk is used to find Fk+1  



Anti-monotone property of support

• The efficiency of this approach is based on anti-monotone
property of support: if a set cannot pass the support test, all 
its supersets will fail the same test:

• All subsets of a frequent itemset A must also be frequent

If itemset  A appears in less than minsup fraction of 
transactions, then itemset A with one more item added 
cannot occur more frequently than A. Therefore, if A is 
not frequent, all its supersets are not frequent as well 



Found to be 
Infrequent

Illustrating Apriori Principle

Pruned 
supersets



Apriori Principle: example

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)Minimum support 

count = 3

If every subset is considered, 
C6,1 + C6,2 + C6,3 = 6 + 15 + 20 = 41

With support-based pruning,

6 + 6 + 1 = 13
counting scans

Triplets (3-itemsets)

With the Apriori principle we need to keep 
only this triplet, because it’s the only one 
whose subsets are all frequent. 



Apriori Algorithm
Let k=1

Generate set F1 of frequent 1-itemsets 

Repeat until Fk is empty

k=k+1

Generate all candidate k-itemsets Ck

from frequent k-1 - itemsets Fk-1

Prune candidate itemsets which contain subsets 

of length k-1 that are infrequent 

Count the support of each candidate in Ck by 

scanning the Dataset 

and eliminate candidates that are infrequent, 

leaving only those that are frequent - Fk



Candidate generation and pruning

Many ways to generate candidate itemsets

An effective candidate generation procedure: 
1. Should avoid generating too many unnecessary candidates. 

– A candidate itemset is unnecessary if at least one of its 
subsets is infrequent. 

2. Must ensure that the candidate set is complete, 
– i.e., no frequent itemsets are left out by the candidate 

generation procedure. 
3. Should not generate the same candidate itemset more than 

once. 
– E.g., the candidate itemset {a, b, c, d} can be generated in 

many ways---
• by merging {a, b, c} with {d},
• {c} with {a, b, d}, etc. 



Generating Ck+1 from Fk: brute force 
• A brute force method considers every frequent k-

itemset  as a potential candidate and then applies the 
pruning step to remove any unnecessary candidates.

Frequent 



Fk-1×F1 Method
• Extend each frequent (k - 1)-itemset with a 

frequent 1-itemset.

• Is it complete?

The procedure is complete because every frequent k-
itemset is composed of a frequent (k - 1)-itemset and 
a frequent 1-itemset.

• However, it doesn’t prevent the same candidate 
itemset from being generated more than once. 

E.g., {Bread, Diapers, Milk} can be generated 
by merging 

• {Bread, Diapers} with {Milk},

• {Bread, Milk} with {Diapers}, or 

• {Diapers, Milk} with {Bread}.



Lexicographic Order

• Avoid generating duplicate candidates by ensuring that the 
items in each frequent itemset are kept sorted in lexicographic 
order. 

• Each frequent (k-1)-itemset X is then extended with frequent 
items that are lexicographically larger than the items in X. 

• For example, the itemset {Bread, Diapers} can be augmented 
with {Milk} since Milk is lexicographically larger than Bread and 
Diapers. 

• However, we don’t augment {Diapers, Milk} with {Bread} nor 
{Bread, Milk} with {Diapers} because they violate the 
lexicographic ordering condition.



Lexicographic Order - Completeness

• Is it complete?

Let (i1,…, ik-1, ik) be a frequent k-itemset sorted in lexicographic 
order. 

Since it is frequent, by the Apriori principle, (i1,…, ik-1) and (ik) must 
be frequent as well. 

(i1,…, ik-1) ∈Fk-1 and (ik) ∈F1. 

Since, (ik) is lexicographically bigger than i1,…, ik-1, we have that 
(i1,…, ik-1) would be joined with (ik) for giving (i1,…, ik-1, ik) as a 
candidate k-itemset.



Still too many candidates…

• E.g. merging {Beer, Diapers} with {Milk} is unnecessary because 
one of its subsets, {Beer, Milk}, is infrequent. 

• For a candidate k-itemset to be worthy counting, 

– every item in the candidate must be contained in at least k-1
of the frequent (k-1)-itemsets. 

– {Beer, Diapers, Milk} is a viable candidate 3-itemset only if 
every item in the candidate, including Beer, is contained in at 
least 2 frequent 2itemsets. 

Since there is only one frequent 2-itemset containing Beer, 
all candidate 3-itemsets involving Beer must be infrequent. 

• Why?

Because each of k-1-subsets containing an item must be 
frequent.



Fk-1×F1



Fk-1×Fk-1 Method

• Merge a pair of frequent (k-1)-itemsets only if their first k-2 items are 
identical.

▪ E.g. frequent itemsets {Bread, Diapers} and {Bread, Milk} are merged to form 
a candidate 3-itemset {Bread, Diapers, Milk}.

▪ We don’t merge {Beer, Diapers} with {Diapers, Milk} because the first item in 
both itemsets is different. 

▪ Indeed, if {Beer, Diapers, Milk} is a viable candidate, it would have been 

obtained by merging {Beer, Diapers} with {Beer, Milk} instead.

• This illustrates both the completeness of the candidate generation procedure 
and the advantages of using lexicographic ordering to prevent duplicate 
candidates. 

Pruning?

• Because each candidate is obtained by merging a pair of frequent (k-1) -
itemsets, an additional candidate pruning step is needed to ensure that the 
remaining k-2 subsets of k-1 elements are frequent. 



Fk-1×Fk-1



Toy Example

Find all frequent itemsets from the following data. 
Min support count = 2 

TID Extra cheese Onions Peppers Mushrooms Olives Anchovy

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

Pizza toppings dataset

Binary data format



2. Count 1-item frequent itemsets

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

σ 4 4 1 4 2 1

Support 
count

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}



3. Generate candidate 2-itemsets

A B D E

A

B

D

E

Candidate 2-itemsets C2

{A,B} {A,D} {A,E}
{B,D} {B,E}
{D,E}



4. Scan DB, count candidates

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

A B D E

A 3 3 2

B 2 2

D 1

E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}
{D,E}



2 ways of candidate generation

a) Ck=Fk x F1

b) Ck=Fk-1 x Fk-1

In both cases itemsets are lexicographically 
sorted: we may extend existing itemset only 
with an item which is lexicographically 
largest among all items in Fk-1



5a. Generate C3=F2xF1

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}



5a. Generate C3=F2xF1

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



5a. Prune C3 before counting

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



5b. Generate C3=F2xF2

F2\F2 A,B A,D A,E B,D B,E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

The first item should be 
identical in order to join



5b. Prune C3 before counting

F2\F2 A,B A,D A,E B,D B,E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

The first item should be 
identical in order to join

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



6. Count candidates C3

F2\F1 A B D E

A,B 2 2

A,D

A,E

B,D

B,E

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

Frequent 3-itemsets F3

{A,B,D} {A,B,E}



7a. Generate candidates C4=F3xF1

F3\F1 A B D E

A,B,D

A,B,E

The only candidate 4-itemset:
{A,B,D,E} 
Do we need to count its support?
Can it be pruned?



Solution: all frequent k-itemsets, k>=2

• {A,B} {A,D} {A,E} {B,D} {B,E}

• {A,B,D} {A,B,E}

A
Extra cheese

B
Onions

C
Peppers

D
Mushrooms

E
Olives

F
Anchovy

• {Cheese, Onions} {Cheese, Mushrooms} {Cheese, Olives} 
{Onions, Mushrooms} {Onions, Olives}

• {Cheese, Onions, Mushrooms} {Cheese, Onions, Olives}



Larger Example

TID List of item ID’s

T1 I1, I2, I5

T2 I2, I4

T3 I2, I3

T4 I1, I2, I4

T5 I1, I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

Min_sup_count = 2

Itemset

{I5}

{I4}

{I3}

{I2}

{I1}

C1

Sup. 
count

Itemset

2{I5}

2{I4}

6{I3}

7{I2}

6{I1}

F1

2. Count 1-item frequent itemsets



3. Generate C2 from F1×F1

TID List of item ID’s

T1 I1, I2, I5

T2 I2, I4

T3 I2, I3

T4 I1, I2, I4

T5 I1, I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

Min_sup_count = 2

Itemset Sup. 

count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

F1

{I4,I5}

{I3,I5}

{I3,I4}

{I2,I5}

{I2,I4}

Itemset

{I2,I3}

{I1,I5}

{I1,I4}

{I1,I3}

{I1,I2}

C2

Itemset Sup. C

{I1,I2} 4

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

{I3,I4} 0

{I3,I5} 1

{I4,I5} 0



4. Generate C3 from F2×F2

TID List of item ID’s

T1 I1, I2, I5

T2 I2, I4

T3 I2, I3

T4 I1, I2, I4

T5 I1, I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

Min_sup_count = 2

Itemset Sup. C

{I1,I2} 4

{I1,I3} 4

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

F2

Itemset

{I1,I2,I3}

{I1,I2,I5}

{I1,I3,I5}

{I2,I3,I4}

{I2,I3,I5}

{I2,I4,I5}

Prune

Itemset

{I1,I2,I3}

{I1,I2,I5}

{I1,I3,I5}

{I2,I3,I4}

{I2,I3,I5}

{I2,I4,I5}

Itemset Sup. C

{I1,I2,I3} 2

{I1,I2,I5} 2

F3



Itemset Sup. C

{I1,I2,I3} 2

{I1,I2,I5} 2

5. Generate C4 from F3×F3

TID List of item ID’s

T1 I1, I2, I5

T2 I2, I4

T3 I2, I3

T4 I1, I2, I4

T5 I1, I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

Min_sup_count = 2

Itemset Sup. C

{I1,I2,I3,I5} 2

C4

{I1,I2,I3,I5} is pruned because {I2,I3,I5} is 
infrequent

F3



Apriori Algorithm. Summary

Generate F1

Let k=1

Repeat until Fk is empty

k=k+1

Generate Ck from Fk-1

Prune Ck containing subsets that are not in Fk-1

Count support of each candidate in Ck by scanning DB

Eliminate infrequent candidates, leaving Fk

Generating and pruning this way reduces the number of 
candidates to be counted against the dataset



Algorithms and Data Structures

Improving performance with



Alternative to Apriori algorithm: 
FP-growth

Good explanation and code in Python: Link

https://towardsdatascience.com/understand-and-build-fp-growth-algorithm-in-python-d8b989bab342


Candidate support counting
• Scan the database of transactions to determine the support of 

each candidate itemset

• Brute force: Match each transaction against every candidate. 

– Too many comparisons!

• Better method: Store the candidate itemsets in a hash 
structure

– A transaction will be tested for match only against candidates 
contained in a few buckets



Hash tree: to make counting of 
candidates faster 

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction



Generate Hash Tree

2 3 4
5 6 7

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 81,

4,
7

2,
5,
8

3,
6,
9

Hash 
function

Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 5 6}, {3 
5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

• A hash function (e.g. p mod 3)

• Max leaf size: max number of itemsets stored in a leaf node (if number of candidate 
itemsets exceeds max leaf size, split the node)



Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 5 6}, {3 
5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4
5 6 7

1 4 5
1 3 6
1 2 4
4 5 7
1 2 5
4 5 8
1 5 9

3 5 6
3 5 7
6 8 9
3 4 5
3 6 7
3 6 8

Split nodes with more than 
3 candidates 

using the second item and 
the same hash function

1,
4,
7

2,
5,
8

3,
6,
9

Hash 
function



Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 5 6}, {3 
5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4
5 6 7 3 5 6

3 5 7
6 8 9
3 4 5
3 6 7
3 6 8

1 2 4
4 5 7
1 2 5
4 5 8
1 5 9

1 4 5
1 3 6

Now split nodes
using the third item

1,
4,
7

2,
5,
8

3,
6,
9

Hash 
function



Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 5 6}, {3 
5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4
5 6 7 3 5 6

3 5 7
6 8 9
3 4 5
3 6 7
3 6 8

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

Now, split this similarly.

1,
4,
7

2,
5,
8

3,
6,
9

Hash 
function



Enumerating all subsets of a 
given transaction

Given a (lexicographically ordered) 
transaction t, say {1,2,3,5,6} how can we 
enumerate all possible subsets of size 3?



Subset counting using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7
1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +

1,4,
7

2,5,
8

3,6,
9

Hash Functiontransactio
n

Match transaction against 7 out of 15 candidates



RULE GENERATION

Step 2



Rule Generation

• An association rule can be extracted by a binary partitioning of 
a frequent itemset Y into two nonempty subsets, X and Y -X, 
such that 

X →Y-X

satisfies the confidence threshold. 

• Each frequent k-itemset, Y, can produce up to 2k-2 association 
rules 

– ignoring rules that have empty antecedents or consequents.



Rule Generation
Example
Let Y = {1, 2, 3} be a frequent itemset. 
Six candidate association rules can be generated from Y: 
{1, 2} →{3}, 
{1, 3} →{2}, 
{2, 3} →{1}, 
{1} →{2, 3}, 
{2} →{1, 3}, 
{3} → {1, 2}. 

Confidence, unlike support is not anti-monotone:
Knowing that c(X → Y) < minConfidence, we cannot tell whether 
c(X’ → Y’) < minConfidence
or c(X’ → Y’) > minConfidence , for X’ ⊆ X and Y’ ⊆ Y

Do we need to compute confidence for all possible rules for each 
frequent itemset Y?

Computing the confidence of an association rule 
does not require additional scans of the database.

Consider {1, 2} → {3}. 

The confidence is σ ({1, 2, 3}) / σ ({1, 2})

Because {1, 2, 3} is frequent, the antimonotone 
property of support ensures that {1, 2} must be 
frequent, too, and we preserve the supports of all 
frequent itemsets.



Confidence-based rule pruning

Theorem. 
If a rule X → Y – X does not satisfy the 

confidence threshold, 

then any rule X ’ → Y – X ’, where X ’ is a 
subset of X, cannot satisfy the confidence 
threshold as well. 

Y

X

X’



Confidence-based rule pruning

Proof.
Consider the following two rules: 

X ’ → Y – X ’ and X → Y – X, where X ’⊆ X. 

The confidence of the rules are σ (Y ) / σ (X ’)
and σ (Y ) / σ (X), respectively. 

Since X ’ is a subset of X, σ (X ’) ≥ σ (X).

Therefore, the former rule cannot have a 
higher confidence than the latter rule.

Y

X

X’



Confidence-Based Pruning

• Observe that: 

X ’⊆ X implies that Y – X ’ ⊇ Y – X

Y

X

X’



Algorithm for rule generation

• Initially, all the high-confidence rules that have only one item
in the rule consequent are extracted: Y - X1 → Y

• These rules are then used to generate new candidate rules. 

• For example, if 

– {acd} → {b} and {abd} → {c} are high-confidence rules, 
then the candidate rule {ad} → {bc} is generated by 
merging the consequents of both rules.



Example: 1/2

{Bread,Milk} →{Diaper}  (confidence = 3/3) threshold=50%
{Bread,Diaper} →{Milk}  (confidence = 3/3)
{Diaper,Milk} →{Bread}  (confidence = 3/3)

Items (1-itemsets)

Pairs (2-itemsets)

Triplets (3-itemsets)

High-confidence rules with 1 item in consequent



Example: 2/2

Merge only if high-confidence:
{Bread,Milk} →{Diaper}  (confidence = 3/3)
{Bread,Diaper} →{Milk}  (confidence = 3/3)

{Bread} →{Diaper,Milk}   (confidence = 3/4)

Rule confidence:

c({Bread} →{Diaper, Milk}) = σ ({Bread, Diaper, Milk}) / σ({Bread})


